Mathematics Fundamentals Year 13 - Pure Mathematics

Knowledge	Skills
Algebraic Fractions	
- Simplification of rational expressions including factorising and cancelling. - Algebraic long division.	- To be able to simplify algebraic fractions where the denominators will be linear or quadratic, e.g. $\frac{1}{a x+b}, \frac{a x+b}{p x^{2}+q x+r}, \frac{x^{3}+1}{x^{2}-1}$

Knowledge	Skills
Functions	- One-one or many-one mapping from \mathbb{R} (or a subset of $\mathbb{R})$ fo \mathbb{R}.
- To understand the definition of a function.	- The notation $f: x$ and $f(x)$ will be used.
- To know the domain and range of a function.	- To know that $f g$ will mean 'do g first, then f '.
- To calculate composition of functions.	- To understand that if f-1 exists, then $f-1 f(x)=f f-1(x)=x$.
- To determine the inverse of a function.	- Students should be able to sketch the graphs of $y=\|a x+b\|$ and
- To draw graphical representations of functions and their	
inverse.	
- To understand the modulus function	

Knowledge	Skills
Exponential and Logarithm	
- The function e^{x} and its graph. - The function $\ln x$ and its graph - $\operatorname{In} \mathrm{x}$ as the inverse function of e^{x}.	- To apply knowledge to understand graphs of $y=e^{a x+b}$ - To find solutions of equations of the form $e^{a x+b}=p$ and $\ln (a x+b)=a$

Mathematics Fundamentals Year 13 - Pure Mathematics

Knowledge

Skills

Numerical Methods

- To find location of roots $\mathrm{f}(\mathrm{x})=0$ by considering changes of sign of $f(x)$ in an interval of x in which $f(x)$ is continuous.
- To approximate solution of equations using simple iterative methods, including recurrence relations of the form $x_{n+1}=f\left(x_{n}\right)$
- To understand the terms continuous and discrete functions
- To recognise that a change of sign indicates a root of an equation
- To acknowledge that different iterative processes can give multiple solutions to equations.

Knowledge	
Transforming graphs of functions	
- To understand and apply combinations of the transformations	
	$y=f(x)$ as represented by $y=a f(x), y=f(x)+a, y=f(x+a), y=$
	$f(a x)$.
- This includes trigonometric graphs.	

Knowledge

Skills

- Students should be able to sketch the graph of, for example, $y=2 f(3 x), y=f(-x)+1$ given the graph of $y=f(x)$.
- To be able to sketch the graph of, for example, $y=3+\sin 2 x$, or $y=-\cos (x+\pi / 4)$

Knowledge	Skills
Trigonometry	- To understand that angles are measured in both degrees and
- Knowledge of secant, cosecant and cotangent	radians - Understanding of arcsin, arccos and arctan. - Know their relationships to sine, cosine and tangent. - To gain an understanding of their graphs and appropriate restricted domains.

Knowledge	Skills
Further trigonometric identities	- To include application to half angles.
- Knowledge and use of $\sec ^{2} \theta=1+\tan ^{2} \theta$	- To solve equations such as $a \cos \theta+b \sin \theta=c$ in a given interval

Mathematics Fundamentals Year 13 - Pure Mathematics

- Knowledge and use of double angle formulae
- Use of formulae for sin $(A \pm B), \cos (A \pm B)$ and tan $(A \pm B)$
- To write expressions for $a \cos \theta+b \sin \theta$ in the equivalent forms of $r \cos (\theta \pm a)$ or $r \sin (\theta \pm a)$.

Knowledge	Skills
Differentiation	
- To be able to differentiate e^{x} - To differentiation $\ln x$ - To differentiate $\sin (x), \cos (x)$ and $\tan (x)$ - To apply the product rule - To apply the quotient rule - To apply the chain rule - To use $d y / d x=1 /(d x / d y)$	- To be able to differentiate multiple functions that include the sum and difference of trigonometric functions. - Differentiation of $\operatorname{cosec}(x), \sec (x)$ and $\cot (x)$ - differentiation of functions generated from standard forms using products, quotients and composition, such as $2 x^{4} \sin x$, $e^{3 x} / x, \cos x^{2}$ and $\tan ^{2} 2 x$. - To find $d y / d x$ for $x=\sin (3 y)$

Knowledge

Partial fractions

- To understand rational functions.
- To understand partial fractions and split fractions where the denominators are not more complicated than repeated linear terms.
- To apply skills to integration and differentiation, and series expansions.

Skills

- Recall how to add (algebraic) fractions with different denominators
- To be able to work backwards and split an algebraic fraction into components called "Partial Fractions".
- Partial fractions to include denominators such as $(a x+b)(c x+d)(e x+f)$ and $(a x+b)(c x+d)^{2}$.

Mathematics Fundamentals Year 13 - Pure Mathematics

Knowledge

Skills

Co-ordinate geometry in the $x-y$ plane

- To understand the difference between Cartesian and parametric equations.
- To write parametric equations of curves.
- To convert between Cartesian and parametric forms.

Knowledge	Skills
Binomial expansion	
- To be able to undertake a binomial expansion for any rational n.	- For $\|x\|<b / a$, students should be able to obtain the expansion of $(a x+b) n$ - To be able to expand rational functions by decomposition into partial fractions.

Knowledge	Skills
Further differentiation	
- To be able to differentiate simple functions defined implicitly or parametrically. - To apply differentiation to exponential growth or decay. - To be able to form and solve simple differential equations.	- To be able to find equations of tangents and normals to curves given parametrically or implicitly. - To gain a knowledge and apply the result of $d / d x\left(a^{x}\right)=a^{x} \ln a$ - To solve differential equations involving connected rates of change.

Knowledge	Skills	
Vectors		
- To understand and apply vectors in two and three dimensions. - To know the magnitude of a vector. - To apply algebraic operations of vector addition, multiplication by scalar - To interpret geometrically algebraic operations of vectors. - To understand position vectors - To calculate the distance between two points	- To be able to find a unit vector in the direction of a - To be familiar and apply \|a	 - The distance d between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is given by $d^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}$. - To include the forms $\mathbf{r}=\mathbf{a}+\dagger \mathbf{b}$ and $\mathbf{r}=\mathbf{c}+\dagger(\mathbf{d}-\mathbf{c})$. - To calculate the intersection, or otherwise, of two lines. - Students should know that for $O A=\mathbf{a}=a_{1} \mathbf{i}+a_{2 j}+a_{3} \mathbf{k}$ and

[Type here]

Mathematics Fundamentals Year 13 - Pure Mathematics

- To state the vector equation of lines.
- To determine the scalar product and its application for calculating the angle between two lines.
$O B=\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ then $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$ and $\cos \angle A O B=\mathbf{a} \cdot \mathbf{b} /(|\mathbf{a}||\mathbf{b}|)$
- To know that $\mathbf{a} . \mathbf{b}=0$, and \mathbf{a} and \mathbf{b} are nonzero vectors, then \mathbf{a} and \mathbf{b} are perpendicular.

Knowledge	Skills
Integration	
- To integrate e^{x} - To integrate $1 / x$ - To integrate $\sin (x)$ and $\cos (x)$ - To integrate via substitution and by parts. - To apply simple cases of integration by partial fractions. - To analyse solutions of simple first order differential equations with separate variables. - To numerically integrate functions.	- To include integration of standard functions such as $\sin 3 x, \sec 22 x$, $\tan (x), \mathrm{e}^{5 x}, 1 / 2 x$ - To be able to use trigonometric identities to integrate, for example, $\sin ^{2} x, \tan ^{2} x, \cos ^{2} 3 x$. - To understand that integration by substitution and parts is the reverse of chain and product rules respectively. - To integrate $\ln x$ with respect to x - To apply integration by parts multiple times - To integrate rational expressions such as those arising from partial fractions. - To apply trapezium rule, recognising that increasing the number of trapezia improves accuracy.

