Belfairs Academy ## Computing Year 10 Fundamentals | Knowledge | Skills | |---|--| | Algorithms | Aware of: | | | Computational Thinking (Abstraction, decomposition, pattern recognition and algorithmic thinking) Standard Searching Algorithms (linear and binary search) Standard Sorting Algorithms (bubble, merge and insertion) Pseudocode Flow Charts Interpretation of Algorithms | | Programming Techniques | Use of variable commstants, operators, inputs, outputs and assignments Use of sequence, selection and iteration in the program Use of basic string manipulation Use of basic file handling operations (open, read, write & close) Using records to store data SQL to search for data Use of Lists (1D & 2D) when solving problems Structuring code using functions and procedures Use of data types and casting Common arithmetic and Boolean operators | | Producing Robust Programs | Defensive design considerations (input sanitisation, validation, planning for contingencies, anticipating misuse, authentication) Maintainability (comments and indentation) Purpose of iterative testing Purpose of final testing Identifying syntax and logic errors Selecting and using suitable test data | | Computational Logic | Why data is represented in computer systems in binary form Logic Diagrams using AND, OR & NOT Combining Boolean operators using AND, OR and NOT Applying logical operators in appropriate truth table to solve problems Applying computing-related mathematics (arithmetic, exponentiation MOD & DIV) | | Translators and Facilities of Languages | Characteristics and purpose of different level languages including low level languages The purpose of translators The characteristics of an assembler, compiler, and interpreter Common tools and facilities available in integrated development environments (IDEs) (editors, error diagnostics, run-time environment & translators) | ## **Belfairs Academy** Define and explain the difference between lossy and lossless compression ## Computing Year 10 Fundamentals | Data Representation | Bit, nibble, byte, kilobyte, megabyte, gigabyte, terabyte, petabyte. | |---------------------|--| | | Converting to binary format to be processed by a computer | | | Convert positive denary whole numbers (0-255) to 8-bit
binary and vice-versa | | | Add two 8-bit integers and explain overflow errors which | | | may occur • Binary shifts | | | Convert positive denary whole numbers (0-255) to 2 digit
hexadecimal numbers and vice-versa | | | How to convert from binary to hexadecimal and vice-versa Check digits | | | Using binary codes to represent characters | | | Define the term 'character set' | | | Explain the relationship between the number of bits per | | | character in a character set and the number of characters | | | which can be represented (eg ASCII, extended ASCII and Unicode) | | | Explain how an image is represented as a series of pixels
represented in binary | | | Explain how meta data is included in a file | | | Explain how colour depth and resolution affect file size for
an image | | | Explain how sound can be sampled and stored in digital form | | | Explain how sampling intervals and other factors affect the
size of a sound file and the quality of its playback (sample | | | size, bit rate, sampling frequency) | | | Explain the need for compression |