

Belfairs Academy A Level Biology Fundamentals Map

Knowledge	Skills
DEVELOPMENT OF PRACTICAL SKILLS IN BIOLOGY	Present data in appropriate ways.
Solve problems set in practical contexts. Apply scientific knowledge to practical contexts. Comment on experimental design and evaluate scientific methods. Evaluate results and draw conclusions with reference to measurement. Identify variables including those that must be controlled. Consider margins of error, accuracy and precision of data. Researches, references and reports.	Plot and interpret graphs. Process and analyse data using appropriate mathematical skills. Apply investigative approaches and methods when using instruments and equipment. Safely use a range of practical equipment and materials. Make and record observations.
BIOLOGICAL MOLECULES Monomers and polymers. Carbohydrates. Lipids. Proteins. Nucleic acids are important information carrying molecules. ATP. Water. Inorganic ions.	Identify variables to be controlled in an enzymes rate of reaction investigation. Calculate the uncertainty of their measurements of the rate of reaction. Select an appropriate format for the graphical presentation of the results of an enzyme-controlled reaction. Use a tangent to find the initial rate of an enzyme-controlled reaction. Use incomplete information about the frequency of bases on DNA strands to find the frequency of other bases.
CELLS Structure of eukaryotic cells. Structure of prokaryotic cells and of viruses. Methods of studying cells. All cells arise from other cells. Transport across cell membranes. Cell recognition and the immune system.	Calculation of a mitotic index. Determine the water potential of plant tissues using the intercept of a graph.
ORGANISMS EXCHANGE SUBSTANCES WITH THEIR ENVIRONMENT Surface area to volume ratio. Gas exchange. Digestion and absorption. Mass transport in animals. Mass transport in plants.	Use agar blocks containing indicator to determine the effect of surface area to volume ratio and concentration gradient on the diffusion of an acid or alkali. Calculate the surface area to volume ratios of different cells. Change the subject of an equation. Design and carry out investigations into the effect of a pH or bile salts on the rate of reaction catalysed by a digestive Enzyme. Use Visking tubing models to investigate the absorption of the products of digestion.

Belfairs Academy A Level Biology Fundamentals Map

CENETIC INFORMATION VARIATION AND	Use the expression on the calculate the
GENETIC INFORMATION, VARIATION AND	Use the expression 2n to calculate the
RELATIONSHIPS BETWEEN ORGANISMS	possible number of different
DNA, genes and chromosomes.	combinations of chromosomes following
DNA and protein synthesis.	meiosis, without crossing over.
Genetic diversity can arise as a result of	Derive a formula from this to calculate
mutation or during meiosis.	the possible number of different
Genetic diversity and adaptation.	combinations of chromosomes following
Species and taxonomy.	random fertilisation of two gametes.
Biodiversity within a community.	Use a logarithmic scale when dealing
Investigating diversity.	with data relating to large numbers of
	bacteria in a culture.
	Calculate index of diversity and
	interpret the significance of the
	calculated value of the index.
ENERGY TRANSFERS IN AND BETWEEN	
ORGANISMS	Calculate gross primary productivity
	and to derive the appropriate units.
Photosynthesis.	From data calculate the net
Respiration.	productivity of producers or consumers
Energy and ecosystems.	from given data and the efficiency of
Nutrient cycles.	energy transfers within ecosystems.
	Devise investigations into the effect
	of named minerals on plant growth.
ORGANISMS RESPOND TO CHANGES IN THEIR	Use appropriate units when calculating
INTERNAL AND EXTERNAL ENVIRONMENTS	the maximum frequency of impulse
Stimuli, both internal and external, are detected	conduction given the refractory period
and lead to a response.	of a neurone.
Nervous coordination.	
Skeletal muscles are stimulated to contract by	
nerves and act as effectors.	
Homeostasis is the maintenance of a stable	
internal environment.	
GENETICS, POPULATIONS, EVOLUTION AND	Represent phenotypic ratios.
ECOSYSTEMS	Use X^2 to investigate significance of
Inheritance.	
	differences between expected and
Populations.	observed phenotypic ratios.
Evolution may lead to speciation.	Use the Hardy–Weinberg equation.
Populations in ecosystems.	
THE CONTROL OF GENE EXPRESSION	
Alteration of the sequence of bases in DNA can	
alter the structure of proteins.	
Gene expression is controlled by a number of	
features.	
Using genome projects.	
Gene technologies allow the study and	
alteration of gene function allowing a better	
understanding of organism function and the	
design of new industrial and medical processes.	